Reversible hydrogenation of deuterium-intercalated quasi-free-standing graphene on SiC(0001)
نویسندگان
چکیده
منابع مشابه
Reversible basal plane hydrogenation of graphene.
We report the chemical reaction of single-layer graphene with hydrogen atoms, generated in situ by electron-induced dissociation of hydrogen silsesquioxane (HSQ). Hydrogenation, forming sp3 C--H functionality on the basal plane of graphene, proceeds at a higher rate for single than for double layers, demonstrating the enhanced chemical reactivity of single sheet graphene. The net H atom stickin...
متن کاملThickness-dependent reversible hydrogenation of graphene layers.
In this work, graphene layers on SiO(2)/Si substrate have been chemically decorated by radio frequency hydrogen plasma. Hydrogen coverage investigation by Raman spectroscopy and micro-X-ray photoelectron spectroscopy characterization demonstrates that the hydrogenation of single layer graphene on SiO(2)/Si substrate is much less feasible than that of bilayer and multilayer graphene. Both the hy...
متن کاملFree-standing epitaxial graphene.
We report on a method to produce free-standing graphene sheets from epitaxial graphene on silicon carbide (SiC) substrate. Doubly clamped nanomechanical resonators with lengths up to 20 microm were patterned using this technique and their resonant motion was actuated and detected optically. Resonance frequencies of the order of tens of megahertz were measured for most devices, indicating that t...
متن کاملTearing of free-standing graphene.
We examine the fracture mechanics of tearing graphene. We present a molecular dynamics simulation of the propagation of cracks in clamped, free-standing graphene as a function of the out-of-plane force. The geometry is motivated by experimental configurations that expose graphene sheets to out-of-plane forces, such as back-gate voltage. We establish the geometry and basic energetics of failure ...
متن کاملOrigin of doping in quasi-free-standing graphene on silicon carbide.
We explain the robust p-type doping observed for quasi-free-standing graphene on hexagonal silicon carbide by the spontaneous polarization of the substrate. This mechanism is based on a bulk property of SiC, unavoidable for any hexagonal polytype of the material and independent of any details of the interface formation. We show that sign and magnitude of the polarization are in perfect agreemen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2012
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.85.201401